介紹如何使用 VersorRigid3DTransform
剛性影像轉換搭配 CenteredTransformInitializer
置中初始化對影像進行對準。
首先定義各種資料與物件的型別。
import itk import matplotlib.pyplot as plt # 定義資料型別 FixedImageType = itk.Image[itk.F, 3] MovingImageType = itk.Image[itk.F, 3] TransformType = itk.VersorRigid3DTransform[itk.D] OptimizerType = itk.RegularStepGradientDescentOptimizerv4[itk.D] RegistrationType = itk.ImageRegistrationMethodv4[FixedImageType, MovingImageType] MetricType = itk.MeanSquaresImageToImageMetricv4[FixedImageType, MovingImageType]
建立影像 reader,並指定影像來源檔案:
# 建立影像 Reader fixedImageReader = itk.ImageFileReader[FixedImageType].New() movingImageReader = itk.ImageFileReader[MovingImageType].New() # 指定影像來源檔案 fixedImageReader.SetFileName("brainweb1e1a10f20.mha") movingImageReader.SetFileName("brainweb1e1a10f20Rot10Tx15.mha")
這裡所使用的原始影像可以從 Kitware Data 的網站上取得。
建立 registration、optimizer、metric 物件:
# 建立 Registration registration = RegistrationType.New() # 指定 Registration 的影像來源 registration.SetFixedImage(fixedImageReader.GetOutput()) registration.SetMovingImage(movingImageReader.GetOutput()) # 設定 Optimizer optimizer = OptimizerType.New() registration.SetOptimizer(optimizer) # 設定 Metric metric = MetricType.New() registration.SetMetric(metric)
建立並設定初始轉換:
# 建立並設定初始轉換 initialTransform = TransformType.New() # 使用 CenteredTransformInitializer 初始化影像位置 TransformInitializerType = itk.CenteredTransformInitializer[ TransformType, FixedImageType, MovingImageType]; transformInitializer = TransformInitializerType.New() transformInitializer.SetTransform(initialTransform) transformInitializer.SetFixedImage(fixedImageReader.GetOutput()) transformInitializer.SetMovingImage(movingImageReader.GetOutput()) transformInitializer.MomentsOn() transformInitializer.InitializeTransform() # 自行指定影像初始旋轉角度 axis = [0, 0, 1] angle = 0.05 # 弧度(radian),0 ~ 2*pi rotation = initialTransform.GetVersor() # rotation.SetIdentity() # rotation.SetRotationAroundX(angle) rotation.Set(axis, angle) initialTransform.SetRotation(rotation) # 設定初始轉換 registration.SetInitialTransform(initialTransform)
這裡我們將所有的轉換都放在同一個 initialTransform 初始轉換中,不再另外個別設定 fixed 與 moving 影像的初始轉換。
設定各參數尺度,旋轉的單位是弧度(radian),平移的單位就要看影像的 voxel size 而定:
# 設定各參數尺度 numOfParam = initialTransform.GetNumberOfParameters() optimizerScales = itk.OptimizerParameters.D(numOfParam) translationScale = 1.0 / 1000.0 optimizerScales.SetElement(0, 1.0) # 旋轉 optimizerScales.SetElement(1, 1.0) # 旋轉 optimizerScales.SetElement(2, 1.0) # 旋轉 optimizerScales.SetElement(3, translationScale) # X 軸平移 optimizerScales.SetElement(4, translationScale) # Y 軸平移 optimizerScales.SetElement(5, translationScale) # Z 軸平移 optimizer.SetScales(optimizerScales)
設定其他的參數:
# 設定疊代次數上限 optimizer.SetNumberOfIterations(200) # 設定 Learning Rate optimizer.SetLearningRate(0.2) # 設定最小步長 optimizer.SetMinimumStepLength(0.001) # 紀錄並傳回最佳解 optimizer.SetReturnBestParametersAndValue(True)
設定回呼函數:
from IPython.display import clear_output # 初始事件回呼函數 def cb_registration_start(): global cb_metric_values global cb_current_iteration_number cb_metric_values = [] cb_current_iteration_number = -1 # 結束事件回呼函數 def cb_registration_end(): global cb_metric_values global cb_current_iteration_number del cb_metric_values del cb_current_iteration_number plt.close() # 疊代事件回呼函數 def cb_registration_iteration(): global cb_metric_values global cb_current_iteration_number # 忽略重覆產生的疊代事件 if optimizer.GetCurrentIteration() == cb_current_iteration_number: return cb_current_iteration_number = optimizer.GetCurrentIteration() cb_metric_values.append(optimizer.GetValue()) # 清空輸出 clear_output(wait=True) # 繪製 Metric 圖形 plt.plot(cb_metric_values) plt.xlabel('Iteration Number', fontsize=12) plt.ylabel('Metric Value', fontsize=12) plt.show() # 加上 Observer,設定事件與回呼函數的對應關係 optimizer.AddObserver(itk.StartEvent(), cb_registration_start) optimizer.AddObserver(itk.EndEvent(), cb_registration_end) optimizer.AddObserver(itk.IterationEvent(), cb_registration_iteration)
設定 levels 相關參數:
# 設定 Levels 相關參數 registration.SetNumberOfLevels(1) registration.SetSmoothingSigmasPerLevel([0]) registration.SetShrinkFactorsPerLevel([1])
進行影像對準,並取得影像對準結果:
# 進行影像對準 registration.Update() # 取得影像對準結果 transform = registration.GetTransform() finalParameters = transform.GetParameters() versorX = finalParameters[0] versorY = finalParameters[1] versorZ = finalParameters[2] finalTranslationX = finalParameters[3] finalTranslationY = finalParameters[4] finalTranslationZ = finalParameters[5] numberOfIterations = optimizer.GetCurrentIteration() bestMetricValue = optimizer.GetValue() print("Registration result: ") print(" versor X = " + str(versorX)) print(" versor Y = " + str(versorY)) print(" versor Z = " + str(versorZ)) print(" Translation X = " + str(finalTranslationX)) print(" Translation Y = " + str(finalTranslationY)) print(" Translation Z = " + str(finalTranslationZ)) print(" Iterations = " + str(numberOfIterations)) print(" Metric value = " + str(bestMetricValue))
Registration result: versor X = -0.0004894967032320457 versor Y = 4.237733030565726e-05 versor Z = -0.08724172378868676 Translation X = 2.647231867780532 Translation Y = -17.466151639587682 Translation Z = -0.0026474097082672884 Iterations = 21 Metric value = 43.983994481735564
根據影像對準所得到的參數,建立一個轉換:
# 根據參數建立轉換 finalTransform = TransformType.New() finalTransform.SetFixedParameters(registration.GetOutput().Get().GetFixedParameters()) finalTransform.SetParameters(finalParameters) matrix = finalTransform.GetMatrix() offset = finalTransform.GetOffset() print("Matrix:\n", itk.GetArrayFromMatrix(matrix)) print("Offset:\n", offset)
Matrix: [[ 9.84777760e-01 1.73818110e-01 1.69840568e-04] [-1.73818193e-01 9.84777284e-01 9.67866412e-04] [ 9.77576960e-07 -9.82654697e-04 9.99999517e-01]] Offset: itkVectorD3 ([-15.0303, -0.0642312, 0.104991])
建立輸出對準結果用的 resampler,搭配轉換產生影像對準的結果:
# 建立輸出對準結果用的 Resampler ResampleFilterType = itk.ResampleImageFilter[MovingImageType, FixedImageType] resampler = ResampleFilterType.New() resampler.SetInput(movingImageReader.GetOutput()) resampler.SetTransform(finalTransform) resampler.SetUseReferenceImage(True) resampler.SetReferenceImage(fixedImageReader.GetOutput()) resampler.SetDefaultPixelValue(100) # 顯示各切面影像 fixedImageArray = itk.GetArrayViewFromImage(fixedImageReader.GetOutput()) resultImageArray = itk.GetArrayViewFromImage(resampler.GetOutput()) fig, axs = plt.subplots(2, 3, figsize=(10, 7)) axs[0,0].imshow(fixedImageArray[fixedImageArray.shape[0]//2,:,:], cmap='gray') axs[0,0].set_title('Fixed Image(X)') axs[0,1].imshow(fixedImageArray[:,fixedImageArray.shape[1]//2,:], cmap='gray') axs[0,1].set_title('Fixed Image(Y)') axs[0,2].imshow(fixedImageArray[:,:,fixedImageArray.shape[2]//2], cmap='gray') axs[0,2].set_title('Fixed Image(Z)') axs[1,0].imshow(resultImageArray[resultImageArray.shape[0]//2,:,:], cmap='gray') axs[1,0].set_title('Result Image(X)') axs[1,1].imshow(resultImageArray[:,resultImageArray.shape[1]//2,:], cmap='gray') axs[1,1].set_title('Result Image(Y)') axs[1,2].imshow(resultImageArray[:,:,resultImageArray.shape[2]//2], cmap='gray') axs[1,2].set_title('Result Image(Z)') plt.show()
將 fixed 影像跟對準結果的影像合併為 RGB 影像:
# 轉換影像數值 OutputPixelType = itk.UC OutputImageType = itk.Image[OutputPixelType, 3] fixedIntensityRescaler = itk.RescaleIntensityImageFilter[FixedImageType, OutputImageType].New() fixedIntensityRescaler.SetInput(fixedImageReader.GetOutput()) fixedIntensityRescaler.SetOutputMinimum(itk.NumericTraits[OutputPixelType].min()) fixedIntensityRescaler.SetOutputMaximum(itk.NumericTraits[OutputPixelType].max()) resultIntensityRescaler = itk.RescaleIntensityImageFilter[FixedImageType, OutputImageType].New() resultIntensityRescaler.SetInput(resampler.GetOutput()) resultIntensityRescaler.SetOutputMinimum(itk.NumericTraits[OutputPixelType].min()) resultIntensityRescaler.SetOutputMaximum(itk.NumericTraits[OutputPixelType].max()) # 合併為 RGB 影像 ComponentType = itk.UC RGBPixelType = itk.RGBPixel[ComponentType] RGBImageType = itk.Image[RGBPixelType, 3] composeFilter = itk.ComposeImageFilter[OutputImageType, RGBImageType].New() composeFilter.SetInput(0, fixedIntensityRescaler.GetOutput()) composeFilter.SetInput(1, resultIntensityRescaler.GetOutput()) composeFilter.SetInput(2, fixedIntensityRescaler.GetOutput()) # 顯示各切面影像 composeImageArray = itk.GetArrayViewFromImage(composeFilter.GetOutput()) fig, axs = plt.subplots(1, 3, figsize=(10, 5)) axs[0].imshow(composeImageArray[composeImageArray.shape[0]//2,:,:], cmap='gray') axs[0].set_title('Result Image(X)') axs[1].imshow(composeImageArray[:,composeImageArray.shape[1]//2,:], cmap='gray') axs[1].set_title('Result Image(Y)') axs[2].imshow(composeImageArray[:,:,composeImageArray.shape[2]//2], cmap='gray') axs[2].set_title('Result Image(Z)') plt.show()
參考資料:ImageRegistration5.py、ImageRegistration5.cxx、ImageRegistration6.cxx、ImageRegistration7.cxx、ImageRegistration8.cxx